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Need to reduce CO2 emissions

n No alternative to concrete,
n No practical alternative 

to Portland cement clinker at scale,
n Best way to reduce CO2 emissions fast and at scale

is increase use of blended cements
n BUT final product is concrete:
n Need to take concrete performance into account

n Lower clinker factor not always better
n How to ensure we have a low permeability,

durable concrete 
with adequate strength
at minimal CO2?



Reduction needed through the value chain
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Reduce CO2
from clinker 
production

Reduce clinker 
in cement

Reduce cement 
in concrete

Reduce 
concrete 

in building

More efficient 
(re)use of 
buildings

• SCMs • Aggregate grading
• Good admixtures
• Use filler
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Classic SCMs – fly ash and slag are 
only around 15% of current cement 
production, will drop to < 10% in near 
future
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LC3 concept

§ Blended with SCMs will be best solution for sustainable cements for 
foreseeable future

§ Only material really potentially available in viable quantities is 
calcined clay.

§ Synergetic reaction of calcined clay and limestone allows high levels 
of substitution: 

5



What is LC3 

LC3 is a family of cements,
the figure refers to
the clinker content

• 50% less clinker
• 40% less CO2
• Similar strength
• Better chloride resistance
• Resistant to alkali silica reaction
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Why can we get such high replacement levels

n Calcination of 
kaolinite at 
700-850°C gives 
metakaolin: much 
more reactive than 
glassy SCMs

» Synergetic reaction of 
Alumina in metakaolin with 
limestone to give space 
filling hydrates
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Benchmark test of clay strength

Calcined kaolinite content overwhelming parameter

n Compressive strength EN 196-1 at 1, 3, 7, 28, 90 d

n Linear increase of strength with the MK content of 
calcined clays

n Similar strength to PC for blends containing 40% of 
calcined kaolinite from 7d onwards

n At 28 and 90 days, little additional benefit >60%

n Minor impacts of  fineness, specific surface and 
secondary phases



Chloride ingress & migration

Apparent diffusion coeffs.Cl profiles for different binders



This is a combination of:

Reactive materials
Water / Cement ratio
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Hydration is about space filling:



Relationship of pore filling to properties
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Mechanical

n Strength and other mechanical properties correlate with porosity in a fairly 
straightforward way.

12

Relationship to 
“gel-space ratio” = f(1/porosity)

A lot of scatter in part due to 
experimental measurement,
but clearly shows space filling / 
porosity dominates



OPC Systems
100% CEM I
(Holcim)

LC3-50 Systems
50% CEM I 
+ 30% Calcined clay (Buhj, 45%)
+ 15% Limestone (Durcal5)
+ 2 % Gypsum

w/c=0.3 w/c=0.4 w/c=0.5

Consider “simple” 
and diversified 

systems

Use/adapt methods 
for saturated pastes

Decouple 
variables

General approach

Chloride ingress more complex:
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Sample 
preparation
Vacuum mixing

Water-curing for 28d 
(in “pore solution”)



Chloride ingress in cementitious pastes
> Bulk resistivity as a rapid indicator
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§ Very rapid indicator of chloride penetration potential (~7s)
§ Well correlated to standardized methods (e.g. RCPT)
§ Threshold values from Shane 1999

Ø Bulk resistivity is much higher for LC3-50

Porosity

Pore solution
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Chloride ingress in cementitious pastes
> Mini-migration tests
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§ Results for OPC and LC3-50 systems
Ø Results for OPC systems in agreement with 

previous results from Truc et al. 2000 (    )
Ø Significantly lower diffusion coefficients for

LC3-50 systems
Ø Same trends as bulk resistivity results

Ø Higher bulk resistivity à lower Cl- diffusion
Ø Cl- binding does not change the trend



Links to microstructure

§ 1H NMR analyses

> Pore classes
PorosityPorosity
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Proton, 1H Nuclear Magnetic Resonance

n a unique technique which 
can analyse porosity 
using water as a probe

n no drying is necessary
n in fact the pores must 

contain water to give a 
signal

n many, in-situ 
measurements 
on same sample
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Experimental procedure

White cement 
W/C = 0.40
Sealed cure

Nuclear Magnetic 
Resonance

Nuclear Magnetic Resonance

Mixing 300 days

t

White cement is preferred
as paramagnetic iron
degrades signal
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Interhydrate pores

Bazzoni 2014

~100 nm



Links to microstructure

§ 1H NMR analyses
§ The method
§ Water families and pore size
§ Amount of each pore class

Ø Increasing w/b increases the amount 
of interhydrate + capillary water 

Ø Which water is responsible for Cl-
diffusion?

Ø The LC3-50 systems contains less C-
S-H interlayer water, but more gel and 
interhydrate pores compared to OPC 
systems.

> Pore classes
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Links to microstructure

§ Tortuosity from the formation factor

> Tortuosity of the porous network
Porosity

𝜌! : Bulk resistivity (Ω.m)

𝜌" : Pore solution resistivity (Ω.m)
𝜎" : Pore solution conductivity (Ω-1m-1)

Ϝ :  Formation factor (-)
𝜏#: Diffusion tortuosity (-)

𝜙 : Porosity (-)
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Links to microstructure

§ Tortuosity from the formation factor
§ Results

Ø Although the amount of pores (gel+ 
interhydrate+capillary) is significantly 
higher for LC3-50 systems, the “tortuosity” 
of the porous network is 2-3 times higher 
than for OPC systems.

Ø This tortuosity thus appear to be an 
important parameter affecting the diffusion 
coefficient.

Ø But these high values cannot be 
explained by simple geometry

> Tortuosity of the porous network
PorosityPorosity
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These tortuosity values not a result of geometry
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Narrow pores, ionic gradients.
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§ Narrow channels dominate solution filled porosity
§ Overlapping concentration gradients will dramatically affect Ion mobility

~8 nm



Pore solution

Links to microstructure

§ Ionic concentration and conductivity
§ Characterization of the pore solution 

by ICP-EOS and IC

Ø The ionic concentrations of the pore solution 
of LC3 systems is much lower than that of 
OPC systems.

Ø From simulation, the migration current and the 
chloride diffusion are function of the OH-

concentration in the pore solution.

> Pore solution composition
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Links to microstructure

§ Current understanding, for the investigated systems:

§ However it is not clear is the origin of these “tortuosities” 

> Diffusion coefficient vs. porosity vs. ionic concentrations
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Conclusions
n Need to optimise systems to reduce CO2 emissions
n Need to understand how different reactive ingredients contribute to space filling
n “Hierarchy” of reactivity:

Alite > MK ~SF ~slag > flyash > belite
n Reduction of porosity roughly linear impact on strength
n For chloride ingress, other factors play a strong role:

n Alkali ions in pore solution
n Interaction of ions with surface of hydrates.
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END

Thank you
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